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MOTION OF A SPHERE IN A LIQUID

CAUSED BY VIBRATIONS OF ANOTHER SPHERE

UDC 532.582O. S. Pyatigorskaya and V. L. Sennitskii

The motion of an absolutely rigid sphere in a nonuniformly vibrating, ideal, incompressible liquid is
considered. The liquid vibrates under the action of an absolutely rigid sphere vibrating in a specified
manner. Refined conditions are obtained under which the inclusion sphere recedes from the vibrat-
ing sphere, approaches it, and does not perform mean motion. It is found that under nonuniform
vibrations of the liquid, the motion of the inclusion can depend on the geometrical parameters of the
hydromechanical system.
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1. Vibrational action on a liquid with inclusions can lead to the effects of a mean, monotonic motion of the
inclusions [1–14]. This circumstance can be used to control inclusions in liquids [5, 10, 15, 16]. Of special interest
is the problem of controlling inclusions whose density coincides with the liquid density. This problem is related to
the possibility of dividing liquid vibrations into uniform and nonuniform [17] (also see [16]).

The problem of the motion of an absolutely rigid spherical inclusion in a nonuniformly vibrating ideal,
incompressible liquid acted upon by an absolutely rigid sphere vibrating in a specified manner was formulated and
solved in [3]. This study revealed that an inclusion whose density is lower than the liquid density recedes from the
vibrating body and an inclusion whose density is higher than the liquid density approaches the vibrating body. It
was found [3] that in the approximation considered, an inclusion whose density coincides with the liquid density
does not perform mean motion (is at rest on the average). Thus, the study of [3] posed the question of whether
liquid vibrations can cause the mean motion of an inclusion if the density of the inclusion coincides with the liquid
density? A positive answer to this question was given in [18] for the case where liquid vibrations are caused by a
doublet that has a time-varying moment. However, in view of the applied value of problems in this research area, it
is important to have theoretical results that would effectively motivate directed experimental studies. Such results
should precisely indicate (if possible) experimental conditions under which one might expect a manifestation of the
effects found theoretically. As applied to the question posed by the study of [3], this implies that theoretical results
should contain a parameter of the dimension of length that characterizes the vibrating body (real vibrating bodies
are extended). In view of the aforesaid, we studied [14] the problem of the motion of an absolutely rigid inclusion in
the form of a circular cylinder in a nonuniformly vibrating, ideal, incompressible liquid acted upon by an absolutely
rigid circular cylinder vibrating in a specified manner. It was found [14] that if the inclusion density coincides with
the liquid density, the inclusion performs mean motion and approaches the vibrating body (which is in accordance
with the findings of [18]). The formulas of [14] that define the mean motion of inclusions contain the radius of the
vibrating body.

In the present paper, we study the motion of an absolutely rigid spherical inclusion in a nonuniformly
vibrating, ideal, incompressible liquid. The liquid is subjected to the vibrational action from an absolutely rigid
sphere vibrating in a specified manner. The formulation of the problem is different from that in [3]. A higher
approximation than in [3] is implemented. It is found that if the inclusion density coincides with the liquid density,
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the inclusion approaches the vibrating body; refined conditions were obtained under which the inclusion recedes
from the vibrating body, approaches the vibrating body, and does not perform mean motion.

2. In an unbounded, incompressible, ideal liquid there are two absolutely rigid spheres. At the initial
time t (at t = 0), the liquid and the spheres are at rest about the inertial rectangular coordinate system x, y, z;
the centers of the spheres are on the y axis. At subsequent times, the first sphere of radius a1 (a vibrating body)
performs specified periodic translational vibrations along the y axis with period T ; the second sphere of radius a2

(an inclusion) performs translational motion along the y axis under the action of the liquid pressure forces; the
liquid flow is potential and axisymmetric. The position of the first sphere is defined by the radius-vector

H = Hey

of the center of the first sphere [ey = (0, 1, 0) and H = A(1− cos(2πt/T ), where A is a constant]. The position of
the second sphere is defined by the radius-vector

S = Sey (1)

of the center of the second sphere (S > H + a1 + a2). It is required to establish how the second sphere moves.
We assume that S0 is the value of S at t = 0, (q1) and (q2) are the surfaces of the first and second spheres,

respectively, n1 is the normal to (q1), n2 is the outward unit normal to (q2), Φ is the liquid velocity potential, P is
the liquid pressure,

F = −
∫ ∫
(q2)

Pn2 · ey dq2 (2)

is the force acting in the y direction on the second sphere from the liquid, ρsphere is the density of the second sphere,
ρliq is the liquid density, and I is an arbitrary function of t.

The coordinate S, pressure P , and potential Φ satisfy the following equations and conditions:

4
3

πa3
2ρsphere

d2S

dt2
= F ; (3)

S = S0,
dS

dt
= 0 at t = 0; (4)

∂Φ
∂t

+
1
2

(∇Φ)2 +
P

ρliq
= I; (5)

∆Φ = 0; (6)

n1 · ∇Φ = n1 · ey
dH

dt
in (q1); (7)

n2 · ∇Φ = n2 · ey
dS

dt
in (q2); (8)

∇Φ → 0 at x2 + y2 + z2 →∞. (9)

3. We consider problem (3)–(9) for small values of α = a2/S0 compared with unity (value β = a1/a2 and
γ = A/a2 are not small or large compared with unity).

Using the method of determining the liquid velocity potential described in [19], we obtain the solution of
problem (6)–(9) that satisfies Eqs. (6) and (9) exactly and Eqs. (7) and (8) approximately, with accuracy up to
quantities proportional to dH/dt and dS/dt and small compared with α9 dH/dt and α9 dS/dt, respectively. Using
(2) and (5) and the indicated solution of problem (6)–(9), we obtain

F =
πa4

2ρliq

T 2

{ 2α3β3

(s− αh)3
[
1 +

α6β3

(s− αh)6
]d2h

dτ2
+

6α4β3

(s− αh)4
[
1− α3β3

(s− αh)3
− 4α5β3

(s− αh)5
](dh

dτ

)2

− 12α6β3

(s− αh)7

×
[
1 +

4α2β2

(s− αh)2
]dh

dτ

ds

dτ
− 1

α

[2
3

+
2α6β3

(s− αh)6
+

6α8β5

(s− αh)8
] d2s

dτ2
+

6α5β3

(s− αh)7
[
1 +

4α2β2

(s− αh)2
]( ds

dτ

)2}
, (10)

where τ = t/T , h = H/a2 = γ(1− cos 2πτ), and s = S/S0.
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Let us assume that for α → 0 and constants τ, β, γ, and λ

s ∼ s0 + αs1 + . . . + α10s10. (11)

According to (3), (4), (10), and (11), in the zeroth, first, . . . , and tenth approximations, we have problems for
s0, s1, . . . , s10. Solving the indicated problems, we obtain

s0 = 1, s1 = 0, s2 = 0, s3 = 0,

s4 = s′
4, s5 = s′

5, s6 = s′
6, s7 = s′

7,

s8 = 3β6λ(λ− 1)

τ∫
0

dτ ′
τ ′∫

0

( dh

dτ ′′

)2

dτ ′′ + s′
8, (12)

s9 = 21β6λ(λ− 1)

τ∫
0

dτ ′
τ ′∫

0

h
( dh

dτ ′′

)2

dτ ′′ + s′
9,

s10 = 84β6λ(λ− 1)

τ∫
0

dτ ′
τ ′∫

0

h2
( dh

dτ ′′

)2

dτ ′′ − 12β6λ

τ∫
0

dτ ′
τ ′∫

0

( dh

dτ ′′

)2

dτ ′′ + s′
10,

where λ = 3ρlig/(2ρsphere + ρliq) and s′
4, s

′
5, . . . , s

′
10 are periodic functions of τ . Using (11) and (12), we obtain

s = ŝ + s′; (13)

s = ŝ + 21π2α9β6γ3[λ− 1 + 5αγ(λ− 1− 4/(35γ2))]τ2 + s′′, (14)

s′ and s′′ are periodic functions of τ .
4. Relations (1), (13), and (14) approximately define the dependence of S on t [(14 has higher accuracy

compared with (13)]. The second sphere, moving along the y axis, performs vibrations and mean monotonic motion.
Expression (15) for ŝ coincides with the corresponding expression for Y/Y0 resulting from formulas (22) and

(24) of [3]. According to (13), for ρsphere < ρliq, the second sphere recedes from the first sphere, and for ρsphere > ρliq,
it approaches the first sphere; the second sphere is at rest on the average if

ρsphere = ρliq. (16)

Formula (14), in particular, demonstrates the refined result concerning the behavior of the second sphere at
ρsphere = ρliq: the second sphere is not at rest and approaches the first sphere.

5. Let us consider the question of under what condition the second sphere does not perform mean motion.
We assume that for α → 0, the constants τ , β, and γ, and ρsphere/ρliq = 1+aα+bα2 (a and b are constants),

we have

s ∼ σ0 + ασ1 + . . . + α10σ10. (17)

According to (3), (4), (10), and (17) in the zero, first . . . , tenth approximations, we have problems for σ0, σ1, . . . , σ10,
respectively. Solving the indicated problems, we obtain

σ0 = 1, σ1 = 0, σ2 = 0, σ3 = 0, σ4 = σ′
4,

σ5 = σ′
5, σ6 = σ′

6, σ7 = σ′
7, σ8 = σ′

8,

σ9 = −2β6a

τ∫
0

dτ ′
τ ′∫

0

( dh

dτ ′′

)2

dτ ′′ + σ′
9, (18)

σ10 = −2β6(2a2 − b− 6)

τ∫
0

dτ ′
τ ′∫

0

( dh

dτ ′′

)2

dτ ′′ − 14aβ6

τ∫
0

dτ ′
τ ′∫

0

h
( dh

dτ ′′

)2

dτ ′′ + σ′
10,
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where σ′
4, σ

′
5, . . . , σ

′
10 are periodic functions τ . From (17) and (18), it follows that the second sphere is at rest on

the average if

ρsphere = (1− 6α2)ρliq (19)

[(19) has higher accuracy than (16)].
We note that (19) can also be obtained from (14).
6. The state of rest determined by relation (19) separates the other two states of qualitatively different

motion of the second sphere. If ρsphere 6= (1 − 6α2)ρliq, the second sphere recedes from the first sphere for ρsphere

< (1 − 6α2)ρliq and approaches it for ρsphere > (1 − 6α2)ρliq. If ρsphere < ρliq, the second sphere recedes from the
first sphere for α <

√
(ρliq − ρsphere)/(6ρliq) and approaches it for α >

√
(ρliq − ρsphere)/(6ρliq). This shows that

under nonuniform vibrations of the liquid, the change in the nature of motion of the inclusion can depend on the
geometrical parameters of the hydromechanical system.

The results imply new possibilities of controlling inclusions in liquids.
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